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Island birds are more vulnerable to extinc-
tion than many continental species (Steadman 
2006), and the Hawaiian avifauna is no excep-
tion. Hawai‘i has lost more than half of its en-
demic birds, including nearly two-thirds of all 
known honeycreeper (Drepanidinae) species 
( James and Olson 1991, Scott et al. 2001, 
Pratt 2005). Past and current threats to Ha-
waiian birds have been well documented and 
include habitat loss and degradation, intro-
duction of alien predators, and avian diseases 
(van Riper and Scott 2001, U.S. Fish and 
Wildlife Service 2006, Pratt et al. 2009). In 
particular, the introduction of avian poxvirus 
and avian malaria devastated the Islands’ 

 avifauna and is now the single most impor-
tant factor limiting distribution, survival, and 
recovery of most endemic Hawaiian forest 
birds. The widespread occurrence of these 
diseases restricts the range of most native bird 
species to elevations above 1,500 m, where 
disease prevalence and vector density are low-
er (Scott et al. 1986, van Riper et al. 1986, 
 Atkinson and LaPointe 2009). Of the 35 Ha-
waiian forest birds that persisted into the 
 latter half of the last century, 24 are listed 
under the U.S. Endangered Species Act, 10 of 
which may be extinct (Pratt et al. 2009). 
Under International Union for Conservation 
of Nature (IUCN) criteria, all but two are 
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considered at least vulnerable, with five en-
dangered, 14 critically endangered, four ex-
tinct, and one extinct in the wild (IUCN 
2010).

Most monitoring efforts of Hawaiian bird 
populations rely on variable circular plot 
(  VCP) surveys, which were initiated in 1976 
(Scott et al. 1986) and from which baseline 
population estimates and densities have been 
determined (Camp et al. 2009b). However, 
this survey method is relatively ineffective for 
monitoring population changes in rare and 
cryptic species, and intensive demographic 
studies have been recommended as an alter-
native (Thompson 2002, MacKenzie et al. 
2004, U.S. Fish and Wildlife Service 2006). 
Demographic data can be used to estimate 
and predict population growth rates and are 
necessary components of population viability 
analyses (Armstrong and Ewen 2002, Nicoll 
et al. 2003, VanderWerf 2009). In long-lived 
bird species, adult survival is often the most 
important factor determining population 
growth (Saether and Bakke 2000, Clark and 
Martin 2007).

The Maui parrotbill (Pseudonestor xan-
thophrys) and Maui ‘alauahio (Paroreomyza 
montana) are long-lived, insectivorous honey-
creepers endemic to the Hawaiian island of 
Maui. They are mostly sympatric, occurring 
only in high-elevation forests on Haleakalä 
Volcano (Simon et al. 1997, Baker and Baker 
2000). The Maui parrotbill is listed as endan-
gered under the U.S. Endangered Species Act 
(U.S. Fish and Wildlife Service 2006) and by 
the state of Hawai‘i, and under IUCN criteria 
the parrotbill is considered critically endan-
gered. Although the ‘alauahio is not listed 
under the Endangered Species Act, it is con-
sidered endangered by the IUCN (IUCN 
2010). Population size of the Maui parrotbill 
was estimated at 502 ± 116 SE birds in 1980 
(Scott et al. 1986), with a mean density of 
17.2 ± 4.16 SE birds/ km2 (Camp et al. 2009a). 
Subsequent analysis of VCP data from 1992 
to 1996 and 1997 to 2001 resulted in mean 
density estimates of 17.0 ± 4.24 SE and 
11.8 ± 2.55 SE birds/ km2, respectively (Camp 
et al. 2009a). Population size of the Maui 
‘alauahio was estimated at 34,839 ± 2,723 SE 
birds in 1980 (Scott et al. 1986), with a mean 

density of 731 ± 64 SE birds/ km2 (Camp et al. 
2009a). Analysis of VCP data from 1992 to 
1996 and 1997 to 2001 resulted in mean den-
sity estimates of 1,483 ± 76 SE birds/ km2 and 
1,167 ± 73 birds/ km2, respectively. The re-
cent estimates may be indicative of an increas-
ing population (Camp et al. 2009a) or could 
be attributable to differing seasonality during 
surveys or improved analytical techniques. 
There is some evidence that ranges of both 
species have contracted at the lower-elevation 
boundaries since 1980 (Baker and Baker 2000, 
Camp et al. 2009a). Within Hanawï Natural 
Area Reserve at the core of their ranges, 
the density of parrotbills was 40 birds/ km2 
(Scott et al. 1986, Simon et al. 2002), and 
‘alauahio densities were as high as 1,480 
birds/ km2 (Simon et al. 2002).

The Maui parrotbill lays a single-egg 
clutch and juveniles are dependent on their 
parents for as long as 17 months (Simon et al. 
1997; Maui Forest Bird Recovery Project, 
 unpubl. data). In contrast, the Maui ‘alauahio 
lives in small family groups of two to six indi-
viduals. They are mostly monogamous, pro-
duce a two-egg clutch, and the fledglings have 
a shorter dependent period (2 – 3 months) but 
may remain with the family group for up to 
20 months (Baker and Baker 2000). Here we 
provide survival estimates for both species us-
ing mark-recapture analysis, and we review 
these survival estimates in terms of the spe-
cies’ respective life-history strategies.

materials and methods

Study Area

Our study occurred at four sites in the 3,035 
ha Hanawï Natural Area Reserve (20° 45′ N, 
156° 08′ W  ) (Figure 1). This state reserve, 
 established in 1986, supports some of the 
most intact native forest remaining in Hawai‘i 
and encompasses the core range of both focal 
species. Fencing of the upper portion of the 
reserve (~800 ha) was completed in 1996, and 
ungulates were eradicated by 1997 (  Vander-
Werf et al. 2003). The study sites (Frisbee 
Meadows, Po‘ouli Camp, State Camp, and 
Greensword Bog) were located in the 
 ungulate-free area between 1,500 m and 2,100 
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m elevation (Figure 1) and ranged in size from 
48 ha (State Camp) to 74 ha (Frisbee Mead-
ows). The habitat consists primarily of wet 
montane forest dominated by ‘öhi‘a (Metrosi-
deros polymorpha), with mesic ‘öhi‘a forest, 
subalpine scrub, and subalpine grassland at 
higher elevations ( Jacobi 1989). Annual rain-
fall across the area averages 5 m (Giambelluca 
et al. 1986), but a gradient of decreasing rain-
fall from northeast to southwest results in 
variation in canopy height and cover among 
the sites (Crausbay and Hotchkiss 2010). 
Po‘ouli Camp and Frisbee Meadows also have 
higher Maui parrotbill densities than State 
Camp and Greensword Bog (Scott et al. 1986, 
Pratt et al. 2001).

Study Species

The Maui parrotbill currently is restricted to 
50 km2 of montane rain forest on windward 

(northeastern) East Maui. However, histori-
cal observations and subfossils indicate that 
parrotbills once occurred in koa (Acacia koa) 
and mixed ‘öhi‘a-koa forests across the islands 
of Maui and Moloka‘i ( James et al. 1987, 
James and Olson 1991, Simon et al. 1997). Al-
most all of those habitats have been lost, and 
the current distribution of the species is likely 
an artifact of the lack of low-elevation forests 
with low disease prevalence and vector densi-
ties (van Riper et al. 1986, Scott et al. 2001, 
Atkinson and LaPointe 2009).

Maui parrotbills forage on shrubs and trees 
for invertebrates, using their large, parrot-like 
bill to excavate prey. This specialized foraging 
behavior may partly explain the long juvenile 
dependency (Lockwood et al. 1994, Simon 
et al. 1997). Breeding pairs inhabit well-
defined  all-purpose territories of roughly 9 ha 
year-round and for successive breeding sea-
sons (Simon et al. 1997). Males defend these 

Figure 1. Location of four study areas within Hanawï Natural Area Reserve, Maui, Hawai‘i.
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territories from conspecifics, which leads to 
low population density, even within suitable 
habitat. Age at first breeding is unknown, but 
no second-year birds have been observed 
nesting nor in breeding condition. Maximum 
age in the wild is at least 16 yr based on re-
sights of color-banded birds (Maui Forest 
Bird Recovery Project, unpubl. data).

The Maui ‘alauahio is mostly sympatric 
with the Maui parrotbill, but it occurs over a 
slightly wider elevational range and in one 
 additional population on the leeward side of 
East Maui (Baker and Baker 2000, Pratt et al. 
2009). Maui ‘alauahio primarily glean inverte-
brates from foliage and may opportunistically 
forage on substrate recently excavated by par-
rotbills (Baker and Baker 2000). Maui ‘alaua-
hio live in family groups that defend 1- to 2-ha 
territories from conspecifics, and offspring 
from previous broods sometimes help to raise 
siblings (Baker and Baker 2000). Breeding is 
usually delayed until the third year, and maxi-
mum age in the wild is at least 14 yr based on 
resights of color-banded birds (Maui Forest 
Bird Recovery Project, unpubl. data).

Data Collection

Mark-recapture studies began in 1994 at Fris-
bee Meadows and continued until 1997; they 
were not resumed until 2006 (Berlin et al. 
2001, Pratt et al. 2001, Simon et al. 2000, 
2002). Similar studies commenced in 1996 at 
State Camp and Greensword Bog and in 1998 
at Po‘ouli Camp. Mist-netting and resight ef-
fort in those study areas has continued since, 
with some annual variation in effort within 
and among sites (see Table 1). Individuals 
were captured in mist nets and banded with a 
unique combination of a U.S. Fish and Wild-
life Service numbered steel (parrotbills) or 
aluminum (‘alauahio) band and three plastic 
colored leg bands. Playback was used to in-
crease capture rates, particularly for parrot-
bills. Parrotbills were sexed and age was de-
termined using plumage and morphometric 
criteria (Berlin et al. 2001). Juvenile ‘alauahio 
were distinguished from adults by plumage, 
but determining age for birds after hatch year 
was difficult because of delayed plumage mat-
uration (Baker and Baker 2000). Definitive 

sexing of adult and juvenile Maui ‘alauahio 
was not possible due to incomplete know-
ledge about age-specific plumage and mor-
phometric differences.

Data Analysis

We used standard Cormack-Jolly-Seber 
models of captures and subsequent live en-
counters in program MARK (version 5.1 
[White and Burnham 1999]) to estimate ap-
parent annual survival (Φ) and encounter 
probability (  ρ) of Maui parrotbills and Maui 
‘alauahio based on capture, recapture, and re-
sight data from 1994 to 2007. Populations of 
both species were open because the fate of 
birds was unknown, so values reported repre-
sent apparent survival. We created an en-
counter history for each bird using the year of 
initial capture and all recaptures and resights 
in subsequent years. This study encompassed 
a period of 14 yr, but some years had to be 
excluded for each species due to low effort. 
For Maui parrotbills, 2001 was excluded be-
cause there was insufficient resighting effort, 
and this interval was set to 2 yr, yielding 13 
sampling occasions. For Maui ‘alauahio, 
1994 – 1999 were excluded, resulting in eight 
sampling occasions.

Maui parrotbills were grouped by sex and 
age ( juvenile or adult). Maui ‘alauahio were 
grouped by age only ( juvenile or adult) be-
cause sex could not be reliably determined in 
all birds. We used a two age-class structure to 
code for juveniles (hatch-year birds less than 
1 yr old) and adults (second-year birds and 
older) because second-year birds were diffi-
cult to distinguish from adults. Model nota-
tion followed Lebreton et al. (1992), in which 
subscripts indicate whether parameters dif-
fered among groups (e.g., ϕsex) or time periods 
(ϕ t) or were constant, indicated by a dot (ϕ.). 
For both species, we started with the simplest 
model in which survival and encounter prob-
ability were constant across all groups and 
time periods, and then added factors of age, 
sex (for Maui parrotbills), and time.

A goodness-of-fit test using the median ĉ 
approach in MARK was performed on global 
models for Maui parrotbills and Maui ‘alaua-
hio to determine if the model adequately fit 
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the data and if assumptions underlying analy-
ses were reasonable (Cooch and White 2011). 
Values of ĉ (1.12 ± 0.05 and 1.48 ± 0.03 for 
Maui parrotbills and Maui alauahio, respec-
tively) indicated that both data sets were 
slightly overdispersed, so ĉ was adjusted to the 
estimated values. The fit of models was com-
pared with Akaike’s Information Criterion 
corrected for small sample size using the 
 quasi-likelihood adjustment (QAICc), as cal-
culated by Program MARK. The model with 
the lowest QAICc value was considered to 
have the best fit, but models with QAICc val-
ues that differed (ΔQAICc) by ≤2 also were 
considered to have a reasonable fit (Burnham 
and Anderson 2002). Normalized QAICc 
weights were used as a measure of each mod-
el’s relative likelihood.

results

A total of 103 Maui parrotbills (51 males and 
52 females) banded in the four study areas 
from 1994 to 2007 was included in analyses, 
including seven hatch-year birds. An average 
of 16 birds was captured, recaptured, or re-
sighted each year, and the number of individ-
uals banded and encountered varied among 
years (Table 1). Of 209 annual Maui parrot-
bill encounters, 205 were based on resights 
and five were based only on recaptures. In the 
best-fit model, encounter probability differed 
among years but apparent survival was con-
stant among years (Table 2, Model 1). A 

 model including an effect of sex on encounter 
probability (Table 2, Model 2) had only 
slightly worse fit (∆QAICc = 0.63). Encounter 
probability of females was 5% – 15% higher 
each year than that of males. A model includ-
ing an effect of age on survival (Model 3) also 
had a reasonable fit (∆QAICc = 1.68) and in-
dicated that survival of juveniles (0.76 ± 0.09) 
was lower than that of adults (0.84 ± 0.04). 
Addition of other factors resulted in signifi-
cantly worse fit, indicating that encounter 
probability was not affected by age (Model 4) 

TABLE 1

Numbers of Maui Parrotbills and Maui ‘Alauahio 
Banded / Resighted per Year

Year Maui Parrotbills Maui ‘Alauahioa

1994 9/0
1995 11/7
1996 12/12
1997 12/14
1998 12/9
1999 0/13
2000 2/4 14/2
2001 0/0 11/8
2002 8/4 47/14
2003 11/9 37/43
2004 7/12 29/42
2005 0/6 1/17
2006 3/7 2/19
2007 16/8 27/11
Total 103 179

a  Monitoring of ‘alauahio did not begin until 2000, but 11 
birds banded in previous years were resighted from 2000 to 2007.

TABLE 2

Models Used to Investigate Survival (Φ) and Encounter Probability (  ρ) of Maui Parrotbills

No. Model ∆QAICc QAICc Weight No. Parameters Deviance

1 Φ.ρ t  — 0.35 13 166.57
2 Φ.ρsex + t 0.63 0.26 14 164.90
3 Φageρ t 1.68 0.15 14 165.95
4 Φ.ρage + t 2.21 0.12 14 166.49
5 Φsexρ t 2.27 0.11 14 166.54
6 Φage + sex + tρage + sex + t* 8.61 <0.01 28 138.06
7 Φtρ t 9.80 <0.00 23 152.29
8 Φ.ρ 66.15 <0.00  2 256.52

Note: Subscripts indicate whether parameters differed among groups (e.g., ϕsex) or time periods (ϕ t) or were constant (ϕ.). Overdis-
persion or ĉ was adjusted to 1.12 based on estimation from the global model (*). ΔQAICc is the difference from the best (lowest AICc) 
model. QAICc weight is the relative likelihood of each model.
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and that survival did not differ between the 
sexes (Model 5). Although survival did not ap-
pear to differ among years, small sample sizes 
in some years may have hindered estimation 
of annual variation (Table 1).

A total of 179 Maui ‘alauahio banded or re-
sighted from 1994 to 2007 was included in 
analyses, of which 17 were hatch-year birds. 
An average of 41 birds was captured, recap-
tured, or resighted each year (Table 1). Of 
322 annual Maui ‘alauahio encounters, 318 
were based on resights and four were based 
only on recaptures. The top three models had 
similar fit and included effects of year and 
age on survival and an effect of age on en-
counter probability (Table 3). Survival was 
lower in hatch-year birds (mean Φ = 0.64 ± 
0.13) than in adults (mean Φ = 0.78 ± 0.15) 
and also varied among years (Figure 2) (range: 
0.51 ± 0.18 to 0.95 ± 0.06 in adults, 0.32 ± 
0.07 to 0.89 ± 0.09 in hatch-year birds). Re-
sight probability was higher in hatch-year 
birds (0.71 ± 0.06) than in adults (0.41 ± 0.20) 
and was constant among years.

discussion

Estimates of annual survival in the Maui par-
rotbill and Maui ‘alauahio were high and were 
consistent with our general knowledge of 
their life histories. Both species exhibit a life-
history pattern typical of tropical, south tem-
perate, and island species, characterized by 
long life span, low fecundity, and delayed 
maturation (Martin 1996, Murray 2001). Our 
estimate of survival in adult Maui parrotbills 
(0.84) is among the highest recorded in Ha-

waiian forest birds and may compensate for 
their exceptionally low fecundity. The closest 
living relative of the Maui parrotbill, the ‘akia-
pölä‘au (Hemignathus munroi) from Hawai‘i 
Island, has a similar life-history pattern, a 
one-egg clutch, and high annual survival 
(0.71) (Ralph and Fancy 1996). Our Maui 
‘alauahio survival estimate (0.78) is slightly 
lower than estimates for the Maui parrotbill, 
Hawai‘i ‘elepaio (Chasiempis sandwichensis, 
0.87 in males, 0.81 in females [VanderWerf 
2008]), and O‘ahu ‘elepaio (Chasiempis ibidis, 
0.86 in males, 0.82 in females [VanderWerf 
2009) but comparable with other ecologically 
similar Hawaiian honeycreepers such as the 
Hawai‘i creeper (Oreomystis mana, 0.73) and 
Hawai‘i ‘äkepa (Loxops coccineus, 0.70 [Ralph 
and Fancy 1994a) and higher than estimates 
for other Hawaiian forest birds including 
‘i‘iwi (  Vestiaria coccinea, 0.55 [Ralph and Fancy 
1995]), ‘öma‘o (Myadestes obscurus, 0.66 [Ralph 
and Fancy 1994b]), and palila (Loxioides bail-
leui, 0.63 [Lindsey et al. 1995]).

Estimates of juvenile survival in Maui par-
rotbills and Maui ‘alauahio were notably 
higher than estimates of juvenile survival in 
other Hawaiian forest birds (0.09 in ‘i‘iwi, 
0.13 in ‘apapane, Himatione sanguinea [Ralph 
and Fancy 1995]; 0.36 in palila [Lindsey et al. 
1995]; 0.33 in Hawai‘i ‘elepaio [VanderWerf 
2008]), which may be partly due to the small 
sample sizes in the study reported here. Esti-
mates of juvenile survival reported in this 
study may also be biased high because survival 
was monitored from age at banding and thus 
did not account for mortality between fledg-
ing and banding. During concurrent Maui 

TABLE 3

Models Used to Investigate Survival (Φ) and Encounter Probability (  ρ) of Maui ‘Alauahio

No. Model ∆QAICc QAICc Weight No. Parameters Deviance

1 Φtρ  — 0.35 8 82.00
2 Φtρage 0.03 0.35 9 79.89
3 Φage + tρ 0.90 0.23 9 80.77
4 Φtρ t 5.60 0.02 13 76.78
5 Φage + tρage + t* 6.11 0.02 15 72.85
6 Φ.ρ 8.11 0.01 2 102.59

Note: Overdispersion or ĉ was adjusted to 1.48 based on estimation from the global model (*). ΔQAICc is the difference from the 
best (lowest AICc) model. QAICc weight is the relative likelihood of each model.
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parrotbill nest studies, several fledglings dis-
appeared at an age considered too young to be 
independent (and before banding).

The similarity of survival estimates in male 
and female Maui parrotbills is noteworthy be-
cause female birds generally do not survive as 
long as males due to higher costs of reproduc-
tion and higher predation rates while on nests 
(Bennett and Owens 2002). Survival has been 
found to be lower in females than males in 
several species of endangered Hawaiian birds, 
leading to skewed sex ratios and declining 
populations (Lindsey et al. 1995, VanderWerf 
et al. 2001). In the O‘ahu ‘elepaio, predation 
of females on nests by alien black rats led to 
a higher survival rate of males, but survival 
of females and nest success increased after 
rats were controlled (  VanderWerf and Smith 
2002, VanderWerf 2009). Predation on eggs, 
chicks, and adult Hawaiian forest birds by 
rats is well known (Atkinson 1977, Baker and 

Baker 2000, VanderWerf 2009), but high sur-
vival of both male and female parrotbills sug-
gests that nest predation by rats is not a seri-
ous threat to this species in Hanawï, perhaps 
because rats were controlled at some sites 
during this study (Malcolm et al. 2008). In 
contrast, Maui ‘alauahio nests are generally 
more accessible than those of Maui parrotbills 
and could have suffered more frequent rat 
predation, which might partly account for 
their slightly higher adult mortality. Im-
proved methods of distinguishing the sexes 
in Maui ‘alauahio are needed to examine sex-
specific survival and severity of the threat 
posed by rat predation.

Encounter probability varied among years 
in Maui parrotbills, reflecting variable search 
effort and the difficulty in detecting species 
like parrotbills that occur at low density. 
In contrast, encounter probability of Maui 
‘alauahio was constant among years despite 

Figure 2. Variation in Maui ‘alauahio survival estimates with age and year (Table 3, Model 3). Error bars indicate SE.
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variation in search effort, perhaps because 
‘alauahio are much more conspicuous, often 
approaching observers. The cause of annual 
variation in survival of Maui ‘alauahio is un-
known but could be related to fluctuations in 
climatic factors such as rainfall. It is possible 
that survival of Maui parrotbills also varied 
among years but smaller sample sizes and 
variation in effort hindered estimation of 
time-dependent models.

Hanawï Natural Area Reserve comprises 
the core of both species’ range and is inten-
sively managed; thus the survival estimates 
presented here may represent ideal conditions 
for both species. Measuring demographic 
rates in other portions of the species’ ranges 
should be a focus of future research. Know-
ledge of differential survival rates due to vary-
ing effects of limiting factors such as avian 
disease, suboptimal habitat quality, and pre-
dation by introduced mammals would be 
valuable for long-term conservation planning 
and monitoring effectiveness of current man-
agement. Increased banding and resight effort 
in the study areas would improve sample sizes 
and help refine survival estimates. These esti-
mates will provide managers with important 
baseline data that, in conjunction with ongo-
ing nest success and productivity studies, will 
enable better assessment of population trends 
and subsequent recovery efforts.

Although labor-intensive, focused demo-
graphic research, including mark-recapture 
analysis, likely is superior to point counts 
for monitoring population trends in species 
like the Maui parrotbill that are rare, cryptic, 
or have variable densities. Demographic anal-
yses also can help identify limiting factors 
that  result in population decline, and mitiga-
tion of these threats together with manage-
ment of demographic bottlenecks has led to 
the recovery of several critically endangered 
species (e.g., Bell and Merton 2002, Jones 
2004, VanderWerf 2009) and has potential 
for aiding recovery of Hawai‘i’s endangered 
birds.
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